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1. INTRODUCTION

Recently Riemenschneider er al. [2] have studied the problem of the
convergence of the trigonometric polynomial R, (8; ), which interpolates a
given 2n-periodic function f(f) at the nodes 2kn/n (k=0,1,...,n — 1) and
whose derivatives of orders m,, m,,..., m, are prescribed at these nodes. This
is the problem of (0,m,,..,m;) interpolation. Earlier Sharma, Smith and
Tzimbalario ([4]) (also Cavaretta, Sharma and Varga [1]) had given the
necessary and sufficient conditions for (0, m,,..., m,) trigonometric inter-
polation to be uniquely solvable (i.e., regular). The convergence result of [2]
is proved under the condition that f(8) satisfies the Dini—Lipschitz condition
in cases I, III and IV (Theorem A below) and that in case II, f(8) satisfies
the Zygmund condition. They also remark at the end of their paper that
“sometimes the particular cases have better results” and they refer to some
of the earlier literature to indicate this. Thus, it was shown about fifteen
years back [5] that in the special case of (0, m,) interpolation with m, odd,
convergence holds for all 2z-periodic continuous functions. The object of this
note is to show that a similar situation prevails in the more general case of
(0, m,...., m,) interpolation. Thus we are able to improve Theorem 1 of [2].
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46 SHARMA AND VARMA

Section 2 will deal with notation and statement of the principal result. In
Section 3 we prove some properties of the determinants which we shall need.
We devote Section 4 to finding suitable expressions for the fundamental
polynomials and in Section 5 we turn to obtain the estimates for sums of the
absolute values of the fundamental polynomials. Finally in Section 6 we give
the proof of the main theorem.

2. NOTATION AND MAIN RESULT

Following earlier practice, we shall say that a trigonometric polynomial
7)€ &,, if

M
T)=ay+ Y. (a,cosvd+b,sinvd),  ayb, #0.

p=1

If, however,

M1
T@)=a,+ > (a,cosvl+b,sin vf) + a,, cos (M{H—%n),
v=1

with ¢ =0 or 1, a,, # 0, we shall say that T(#) € €, .. Let E and O, denote
the number of even and odd integers in the set (m,, m,,..,m,). With this
notation, the following theorem is known:

THEOREM A ([1,4]). The problem of (0, m,,...,m,) trigonometric inter-
polation on nodes 2knjn (k =0, 1,..,n — 1) is regular only in the following
cases:

(I) n=2m+1,q=2r,E,—0,=0,TO)E &, M=nr+m,
() n=2m+1,q=2r+1L,E,—-0,=1, T(O)EE, o, M=nr +n,
) n=2m,q=2rE,—0,=0,TO)EE, 4, M=nr+m,
(IV) n=2m+1 (or2m), q=2r+1, E,—0,=—1, T(O)EE, |,
M=nr+n.

In the sequel we shall be concerned with case IV of the above theorem.
Since in this case £,—0O,=—1 and ¢=2r+ 1, we shall suppose that
Mmy,.., m, are even and m, ,.., m, are odd. We shall consider the operator
R ,(8; ) which interpolates /(@) and satisfies the conditions:

RM™@ 5 f)=B" (v=1,2,sq k=0, L,n—1), @2.1)

where B are certain given numbers and 6, = 2kn/n. The fundamental
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polynomials of this interpolation are given by po,,,,j(e) which satisfy the con-
ditions:

pom(0:) =0 k=0,1,.,n—1, v#j
=1, k=0, v=j (2.1a)

The polynomial R,(6; f) can then be given explicitly by
2kn

RO:1= S 1 (B )pou0-00+ 33 Bioon 600 22

We shall prove

THEOREM 1. Suppose n=2m (or 2m+1), gqg=2r+1, and
E,—0,=—1, with m,, m,,...,m, even and m,,,,..,my,,, odd and M =
nr+n If £(8) is a 2n-periodic continuous function, then R, (6; f) given by
(2.2) converges uniformly to f(6) on the real line, provided the numbers B7’
satisfy the growth conditions

By =o(n™),  j=1,2,.,r, (2.3a)

B =o(n™flogn),  j=r+ l..,2r+1. (2.3b)

The estimates for By} given by (2.3a) and (2.3b) cannot be improved.

Remark. In [2], the authors prove uniform convergence of R (8; f) to f(6)
when f(6) satisfies the Dini-Lipschitz condition and all the B{}”s satisfy the
conditions

;(7) = o(n™ log n), J=12...,2r+ 1.

Thus Theorem 1 is an improvement on the result of [2] in two respects:

(i) the Dini-Lipschitz class in [2] has been replaced by the class of
2n-periodic continuous functions, and
(ii) the freedom of A7 for j = 1, 2,..., r has been increased as in (2.3a).

The explicit form of the fundamental polynomials Po.m(6) requires the use
of the determinant 4,(M, g) of order ¢ + 1 which is given by

1 1 1

—M+v)™ o (M v +r)™ - (M4 v+ gr)™

a,00,q)=| M EMEVERT o M anT)
M 4+v)" oo (=M +v+n)" ... (=M +v+gn)™

2.4
640/35/1-4 (2.4)
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Let 4,(/j, z) denote the determinant obtained from 4,(M, g) by replacing the
row corresponding to m; (with m,=0) by
(Z—M+v Z—M+v+n Z—M+v+qn).

Then it is known [2] that the fundamental polynomials p, ,, (6) are given by
the formula

i 4,0,2)
po’m](g) = n Z AU(M9 q) ’

v=0

z=¢'f (CaseI). (2.5)

In all other case, we have

_iTM L A2 N AGE) 1 440 2)
e o T Ry Ry v ST

v=1

3. DETERMINANTS AY)

Denote the minors of the elements of the (f+ 1)th row of 4,(M, g) by

o) )
A}y 475 Then we have

qg+1
A4,M,q)=(=1Y 3 (-1’71 4P (3.1)
p=1
and
. q+l .
4,2)= (1Y Y (=17t ageresemon (32)

p=1

In order to find simplified expressions for the fundmamental polynomials
and to find improved estimates, we shall need some properties of A,‘){,’. We
shall need the known result ([2, Lemma 1]} that the determinant

my ny v mgq
tl tl t]

Lygeens t

K )=l : (3.22)
ml geesy mq lml tmz . tmq

q q q

is strictly positive if 0<t, <---<t, and m; <m,< .- <m, are real
numbers.

We shall prove

LEmMMA 1. If m,,...,m, are even and m,, ,.,M,,.,, are odd and if
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4,(M,q) and AY)) are given by (2.4) and (3.1), then the following relations
hold true:

4,M,q)=4d,_,M, q), v=0,1,.,n—1 (withg=2r +1)(3.3)

AP =—AD 0irw G=012rk=1,20,9+1),  (3.4)
AV =AY iak G=r+1,2r+ L3k=1,2..,9+1), (3.5)
AP =0, k#r+2
(3.6)
:(—1)’“A0(M,q), k=r+2,
A s =4 a0 (j=0,1,.,r; p=0, ,..,71), (3.7
AP =49 =0, j=0,1,2,.r. (3.8)

Remark. A{) #0 for 2<k<q and j=1,2,.,r. Also from (3.4) and
(3.6) we have

A%=0, kertl

(3.9)
=(-1)'4,M,q), k=r+1

Proof. We shall first prove (3.4). A sample row of 4! (which is a deter-
minant of order ¢ (=2r + 1) with jth row and kth column of 4,(M, q) left
out) has the elements

(—nr —n +v)™, (—nr +v)™,...,
(—nr+v+ (k—2)n)", (—ar —n + v + kn)™,..., (nr + v)™. (3.10)

The corresponding row of A\, .., _, has the elements

(—nr —v)™, (—nr —v + n)™,..., (—nr—v + (g — k)n)™,
(—nr—v+(g—k+2)n)™,..,(nr + n—v)™. (3.11)

For p=0,1,.,j— L, j+ L..,r, m, is even so that row (3.10) is obtained
from (3.11) by writing it in the reverse order. However, for p > r + 1, since
m, is odd, the row (3.10) is obtained from (3.11) after writing it in the
reverse order and then multiplying the row by (—1). Thus A%} is obtained
from AY), ., . by writing all the columns in the reverse order and
multiplying each of the last r + 1 rows by (—1). Thus

AR =) AL s ke IS
=(_1) (—l)rAfijlu,quZ—ks j>r+ 1,

which proves (3.4) and (3.5).
Identity (3.3) follows from (3.1) with j =0 on using (3.4).
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When v =0, the (r + 2)th column of 4,(M, q) is (10 --- 0)" from which
we get (3.6).
For j=0, (3.8) follows from (3.6). For j> 1, it is enough to prove that

A§) =0, since A, , | = 0 follows from (3.4). A sample row if (—1)"4¢) is

(nr)m ... n» n™ ... (nr)™, for 1<pKr, p#]J
and

_(nr)m,, e (n)mp nm ... (nr)mp, for r+1< P<yq

By elementary column operations, we have
r i P Q
Crag=p ol

where O is a null-matrix of order (r + 1) X r. Equation (3.8) now follows by
Laplace expansion in terms of the last r + 1 columns.

Finally, to prove (3.7), we again see that for j=0, (3.7) follows from
(3.6). For j > 1, the identity follows on observing that Ay}, ,, ,and 45 ,_,
differ from each other only in one column and its location. By elementary
row operations, it is easy to see that

A((J{)r+2+p =Af){)r+2—P =(=2)"! B;, , - C- n=mrh,

where

lmr+1 (r_l_ l)mr+1

1™ .. (P4 1)™
A=37_,m;, and B; _, is the minor of the element in the jth row and
(r — p)th column of the determinant

FmooL 1M

rm" e lml

LEMMA 2. Under the hypotheses of Theorem 1, the following estimates
hold:

(0)
Avl
4,(M, q)
(0) (0)
Al,r+z+p Al,r+2—p

= = -1 =1,...,r, 313
A,0M,q) ~ dd,q) 00 P her (3.13)

= 0(1) v=,L2.,n—1Il=12,.,9+1) (3.12)
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(A9, L (A%, , )
Avrsaen \_ 52 (Avrs2p Y _ g0y-2) =0, 1,.,r, (3.14
% () ‘S"(AU(M,q)) P 3 14)

where 52 g(v) = g(v+ 1) —2g(v) + g(v—1).

Proof. Since the (r + 2)th column of 4,(M, q) is (1v™ .. v™)7, all the
determinants A9 for /#r+2 will contain the column (v™ v ... p™)7,
Thus A)=n" . G(a) with a=v/n, where G(a) is a polynomial in a of
degree <A with coefficients which do not depend on n(A =31 m,).

It is known [2] that 4,(M, q) = n*®(a), where ®(a) is a polynomial in
(=v/n) of fixed degree, with coefficients independent of n and with ¢(a) =+ 0
for 0 < a < 1. It therefore follows that

40 _ G
4,M.q) @)’

which proves (3.12). Also

() am ()5

2 ——
% n? ocasi da’ S’
where ¢,, ¢, are certain constants independent of #. This proves one part of
(3.14). The same reasoning applies to the second part of (3.14).

In order to prove (3.13), we note that

0) _ A
A(l,r+2+p_B s,
where B is a determinant whose (r + 2)th column consists of the elements
(n™mpm2 .o g Mgt — ") T I g = ming(m,), then
-1

ZA

AL,
o2+ -
‘__L_l’_ N “<c3n ,

4,(M, q)

which proves a part of (3.13). Similarly we get the second part of (3.13).

Remark. Following the same reasoning as above, it can be proved that

A(Jl')
——=0(n"™ v=120.,0-1;,j=0,.,q;/=1,2,.,9+ 1),
Ao 00
‘ (3.12a)
Alreasy =0(n~'"m), (3.13a)
Al(Ma q)

2 (ASri21 2 (A2, C2m .
% (m)=‘5" (m>=0(" ) (p=01urj=10).
' (3.14a)
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LEMMA 3. If A)(M,q)=32t14§,, where A}, are defined by (3.1),
then for j=r + l,...,q, we have

|45(M, q)| oy
——=c,n ", c,>0. 3.15
AO(M9q) ! ! ( )

Proof. From (3.1) it is clear that 4%(M,q) is a determinant obtained
from 4,(M, q) by replacing the (j + 1)th row by the following row of +1’s
and —1’s occurring alternatively:

(1 =1 1 o (=D)¥*Y (3.16)
1 1 1 1 e 1
PEAGM =] DT e 1m0 1
R L R L S L
_(r+ l)mr+l cer —]Mret Q0 Mrer Lo pirn
J+ 1throw : ; o :
_(r+ 1)’"0 P L 0 1™ R

where the (j + 1)th row is given by (3.16). Performing some elementary
column operations and then transposing the first column in front of the last
column and moving the (j + 1)th row into the (r + 2)th position, we see that

n™|45(M, q)l =2""" | S| n?,

where $ is a determinant of the form |} §|, where P is a r X r matrix, O is a
null matrix and R is a r X (r + 1) matrix with all elements zero except in the
last column which is

(+D™ o D™ D e )™

More precisely, we have

m m
plirar L e 17 (r+ l) [
P= E E ) Q= .m ) me |
r™a 1™Ma 1 ot 1)
€1 Cri1

where the row (r™ ... 1™) is missing in P and where ¢, = (—1)"*""'{1 +
=D "2 (v=1,2,.,r+1).
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By Laplace expansion we see that
|45(M, g)|=n"""22"" 1| P Q).

By (3.2a), |Det P| > 0 and using Laplace expansion and (3.2a), we have
|Det Q| > 0. This proves (3.15), since 4,(M, g) = O(n™).

4. THE FUNDAMENTAL POLYNOMIALS p; ,,(6) (j =0, 1...., q)

We shall obtain simplified expressions for the fundamental polynomials
Po.m{(6). We shall prove

LEMMA 4. Under the hypothesis of Theorem 1, we have the following
expressions for p, o(0) and p,,, (0):
1 r+1 n—1 A(O) )
p(,,o(H)z7 [1 +2 2 (=1)—#+! UZ] A”(;& ‘)’cos(np—v)B]. 4.1)

For j=1,2,.,r, we have

( 1)r+1+1 " [A(()j)r+2 ( 1) 0r+2 —p
Pomfl)= ——————cosn 0
° '() n o(qu) pzl 44(M, q) P
r%l n— lA(j)+2 ,
+2 1” L~cosn —vt‘)] 4.2
Yy ¥ ZEE costop =) (42)

and for j=r + 1,...,q, we have

1+mj( 1)/ q+1 (J)
Om-e -1y
Po.m(0) = " [Z (1) o(M )smn(r+2 P
g+1 n 1 A(J)
g 101 )sm{n(r+2 p)—vif ] 4.3)

Proof. In order to prove (4.1), we begin with (2.6) with j=0 and z = ¢*.
From (3.2), (3.3) and (3.4), we see easily that

1 450,z) 1 4,0,z2)

— —_— = 4.4
2 4 0) T 2 4,0,0) 4
Similarly, we see that
" 4,0,z) 1" A4,00,z)+4, ,(0,2)
v - v n—v k4 45
2 a0 2 & 406e) (45



54 SHARMA AND VARMA

Since from (3.2), (3.3), and (3.5), we have

qg+1

[Av(O 2)+4, (0,2)]= > (1Y 4L cos{n(r + 2 — p)—v}8
p=1
r+1 2r+2

2 + Y (=174 cos{n(r+2—p)—vif

p= p= r+2
r+1

=23 (=1)P 40, , cos(np — )8,
p=1

we see the validity of (4.1) from (4.4) and (4.5).
In order to prove (4.2), we again start with (2.6) for j= 1, 2,..., r and see
that using (3.3) and (3.4) we get

1 4jiz) | 1 4,0),2)
2 AO(M’q) 2 An(M’q)

a+1 (l)

S Y

cos{n(r + 2 — p)o}

o(M 9)
el AO s q+1 - (j)
=(-1) Y3 q)+(— Y Z (=1 (M’q)cos{n(r+2 p)o}.

If we split the last summation into two (one from ! to r+ 1 and the other
from r + 3 to 2r + 2) and simplify using (3.7), we get

LAz 1 4.i2)
244M,q) 2 4,M,q)

— (_1)r+j+l [ A:J)V‘FZ
204

(I)

g (=1 Z(;}Z ‘;cos npz‘)]. (4.6)

Similarly, from (3.3) we easily get

"= A,z 1 "5 A4,0,2) +4,_,0,
) (J)’“z’z (J,z) + (J>2)

= =5,+5,, 4.7
v:lAv(M’Q) v=1 Au(M’q) l+ : ( )

where

1 r+1

S,=(=1y Z 200 0) D = Z AW cos{n(r+2— p)—v}0

and

n—1 1 2r+2

S,=(-1Y glm ST (1Y 4P, cos{n(r+2— p)—n +vib.

=r+2
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Since {cos n(r + 2— p) —n +v}j@=cos{n(p —r — 1) — v}H, we see easily on
using (3.7) that
r%‘l n—1 A(j)+2
_ —(—1YH1+J —1)\? b, rti—p _
S,=8,=(-1) 2 (-1) ; A 0La) cos(np —v)6.  (4.8)

The expression (4.2) now follows from (4.6), (4.7) and (4.8). Proof of (4.3)
is analogous and is left out.

5. ESTIMATES FOR 30" |pg (6 — 60,)] (=0, L,..., 7)
In order to obtain the estimates for these sums, we recall the Fejér kernel

and express pg (0 —6,) in terms of the Fejér kernel. Let £y, denote the
known Fejér kernel (Zygmund [8, Vol. I, p. 21]), where

2 Z . .
Iyie=1 +N Z (N— j)cos j(6—46,)
i=1

1
=N [sin N(H—Hk)/Z/sin(O—Gk)/ZV, (5.1
where 8, = 2kn/n (k=0, 1,...,n — 1). It is known that
n—1
N otye=n t,=1 (5.2)
k=0
and it is easy to verify that for N > 1, we have
2c0sN(O—6)=(N+ Dty 4 — 2Nty + N= 1Dty 4. (5.3)
We now prove

LemMMA 5. The following representation holds for p, (6 — 6,),

Poo@—0)=0,,+0, 4+ 034,
where

I N F LR B
l,k_7 - Lo v np—v) np—uv,k*

p=0 p=1 AU(M,(])

l r A(O) +A(U)
o - -1 r—p+1 1,r+2+p 1,r+2—p i , 55
2= pgo( ) 4,(M,q) (np) typ i (5.5)

1,1

O3 W) (r+ 1)ty

and 61 g(") =g(v+ 1) —2g(») + g(v— 1).
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Proof. Starting with (4.1) in Lemma 4 with § — g, instead of § and using

(5.3), we see that

1 r+1 B
G000 -89 = - |1+ X 1S, + 81y Sl
p=1
where
! AL(JO—)I - 2
Sy, = )2 _’—A,,(I;/rf,;; (mp—v+ 1)ty ko
S, ,=—2 nil ——————A:’(‘)l_”” (np—v)t
P v=1 AD(M’q) np vk
and
n—1 40
v, r—p+2
S5, = ;} _—d——Av(;VIfq) (mp—=v+ Dty virn
It is easily seen that
n A(O)
S — v—1,r—p+2 np —v)t .
e v§2 4, M, q) (np ) tup—v.k
and
n—2 A(O)
Y — Tetlyr—p+2 np—v)t, _
3P ozo 4y (msq) (np ) oo vk
so that

SHARMA AND VARMA

(
po.o(g—ak)zﬂl,k+—l_ [1 + ri,l (_l)r"Hl Ano'_)l'r—ptz
n p=1 An—l(M’ q)
A(IO) p+2 5)0) p+2
4,(0.q) P x4 (0. q)
A(O)

M(ﬂp—n + l)tnp‘"“"‘g ]

 4,(M,q)

From (3.6), Aﬁfl_pn(;
p=2.,r+1land 4.,

r+1

0 for p=1,..,r + 1 and from (3.9), 4
1 =(—1)"4,M, gq), so that we have

0)
O, r—p+2

A
—1)y TP LB (ny — 1)y, =0
X G = 1)1y

(np - n) tnp—n.k

(np—1) bnp 1.k
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and
r%’l p+1 Ay p+2 1) 1
-1~ _L‘r:_.np——n-f bap ni1x =L
=T g o
Thus
l r+_‘l .
oo~ 89 =014+ 4 | X (<17
p=1

X %A;O—)l,r*p-f-Z (np—n)t + A(l?:‘—l?+2 (np)t t ]
4,_,M, q) mpmmk 4,(M, q) bk

whence using (3.5), we get (5.4).

LEMMA 6. The following representation holds for p, (0 —6,) for
j=12,..,r,

Pom(8— B = (=) '+ (o} + ¥, + oY), (5.6)

where

) 1 %l D Av J+2-p
o,,k=7 > (=1 O (=== ) - (0 = V) typ— ks

p=1 AL‘(M’ )
9] 1 r{‘l P (lj)+2 p 5
=— —1)p ZLrr2oe iy, i
OZ.k n pb;l ( ) A (M ) (np) np.k ( )

)

. 1 Z A
W _ V —1Y L,r+24p ¢ .
a3.k n o~ ( ) AI(M, q) (np) np.k

Proof. Starting with (4.2), we see that

(__l)r+1+j l-—mj-po‘mj(g —6,)= S(lf’k + S‘z{’k, (5.8)
where
W) ()
Sth=— Af(;;j;) = ,( v A:(R}H; C°S"”(9“9k)]’ 558)
sé"’k=3 < -1y T b, cos(np — v)(0 ~ 6,)
* o = = 4,0M.9) v

4
Sk=0k+ X Bk, (5.9)
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where
) 1 P 5J)+2 P
=— 1P ZRrE2=p iy, s
Bl,k n = ( ) A (M ) (np) np.k
G 1 ’%wl Aél)+1+p
De=— 3 (-1 —"""L (np— 1)t ,
ﬂZ‘k n ‘:l ( ) Ao(M,q) (np n+ ) np~n+1,k
I A9
Vo= — e 3 (1) S (p— ) by
K n p:l( Al(Maq) " *
) 1 n A(j)
N - _ v _1\P 0,r+2-p _1 t
Bik "= (=1) -A—_—O(M,q) (np ) lup— 140
since 4§, =0 by (3.8).
rom we nave
F 3.8), h
. 1 r A(J) 1 A(j)
) - V P 0r+2+p n +1 t _ 0,r+2
2.k n 1:1 ( ) O(M ) (p ) np+ 1k n AO(M, q)
and
B(j) :l Yr’ ( l)p 1r+2+p (np)t
s A T
Since
ﬂ(}) _0(1) _+__1_ T‘ (_ )p Aé{)r+2~p (np)t .
=1 44(M, q) "
and
Bh=ofitt 3 CIF SR Gy,
44(M, q) "
we see that
% ﬂ;] (_]) + (j) _L A:)J.)r+2 _i {‘ (fl)p Ai)j,)r+2+p
iz ndyM,q) n ;7 4y(M, q)
{(np + 1)tnp+l.k_ 2'nptnp.k + (np— 1) tnp—l,k}
_O-(J) +O(J) S(lj)k (5.10)

(on using (5.3) and (5.8a)). From (5.8), (5.9) and (5.10) we get (5.6).
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LEMMA 7. Under the hypotheses of Theorem 1, the following estimates
hold true,

n—1
PIRICET N R (5.11)
k=0
\ ~1 2 0
2 1Peo@—0J=0 [n"" cosec” —|, (5.12)
18—64>8 2
n—1
N om0 — 0 <cyn™™, i=1,2,.,r
kL:‘O' 0, ,( k)l\ 2 J (5.13)

Ley;n M logn, j=r+1,.4q.

Progf. 1In order to prove (5.11), we see from (5.4) on using (3.17) in
Lemma 2, and (5.3) that

n—1 r n-1
Yo=Y Y on)mp—v)=0(1).
k=0 p=0 v=1

Similarly using (3.16) in Lemma 2, we see from (5.4) that
n—1 r

2 lozul=0() X p=0().

k=0

In the same manner, we have

n-1

Z |04l = o(n").
k=0

This completes the proof of (5.11).
If |8 —6,| > d, then

0
Nty <Lc cosec27

so that, as in the case of (5.11), we have

S 19000 — )] < cofn sin?(26).

10—0kl>8

The proof of (5.13) for j= 1, 2,..., 7 is based on (5.6) and (5.7) and uses the
estimates (3.17a). For j=r+ 1,..,q, the inequality has been proved in
Riemenschneider et al. [2].
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Remark. We can show easily that for some & 0 < &< 2n

n—1
Y o= 0> csn™™, j=0,1,..q. (5.14)
k=0

However, for j=r + 1...., g, when m/s are odd, we can show that

n—1

> 1Poumm — B > con ™™ log n. (5.15)
k=0

Thus estimates (5.13) cannot be improved.
In order to prove (5.14), we set

£(6)= Z Pom(®— 0,

which is a trigonometric polynomial of order nr+ n. By Bernstein’s
inequality for trigonometric polynomials, we have

(my) m; —_ mj
omax [g""(8) < Cn max | g(6), C=(r+ 1"

If g(8) attains its maximum at &, we have
ge)>en™™ max |g"(6) >cn” g™ (B)=Cn""

since g"”(#;) = 1 from the properties (2.1a) of the fundamental polynomials.
Thus we have shown that

n—1
D 1pom(&— 001> 18 >en™,
k=0

which proves (5.14).
The proof of (5.15) is more difficult. We use the formula (4.3) which gives
Po.mB) for j=r+ L,..,q. Since sin n(r + 2 — p)(z — ;) = 0 and since

sin{n(r + 2 —p) —vi(x — 6,) = —(=1)""* 27 sin v(n — 6,),

it follows from (4.3) (recall that n is odd) that

Pom@—0 =L |5 S A2 _gnvin -6,
T — = — v
pO,mJ- k n = lp IA(M ) K
so that
— -0 q+1 )
asin? (E50 )iy = 0= sin? (F52) | X s
2 o 2 =
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where
) n~1 (/)
S,,{,,=Z v(M )smv(n 8,).

v=1

Then elementary calculation gives
— 0 i AW
4 sin? (f—z—i)s;{’,,z - T 82 (m) sin v(z — 6,)

A‘f’+ » o
00 T Ads2 2 sin (n — 6,)-

n—1

+
44M, q)
We therefore get
n—1 1 n—~1 g+1 .
Z |po.mj(7z—9k)l:— Z i Sf:j,)p
k=0 n o To =1
f Ayt Ay | | 22
p=1 4y(M, q) k=0
n—1 g+1 n—1 A(}) T—0
— b cosec2< ").
k=0 p=1 v=1 (Au(MaQ)> 2
It is easy to see that
n—1 . n—1 ) n_ek )
N lcot >cnlogn and N cosec = 0(n?).
k=0 k=0 2
From Lemma 2, we have
qHA(J) +A(()J:H2_p q+1 A(()!)p >cn“"'.i
pol 4y(M, q) =1 4o(M, )
and on using (3.17a), we get
n—1
S (Pomm—6 ) >cn ™ logn—c,n™™ >c,n " logn
k=0

This completes the proof of (5.15).
6. PROOF OF THEOREM 1

Since R,(8; f) reproduces constants, we have

n—1

Z Po.o(0—6) =1
k=0
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Therefore from (2.2), we have

n—1

R (O: )= SO)= 3 {f(6)— ()} poo(6—0))

k=0

n—1

q
+ 00 3 BEpomf0—6))
j=1

=1,+1,.

From (5.13) in Lemma 7 and (2.3a), it follows that

n—1

11| < g Z_: (n)HpOmj(e )l = o(1).

From the continuity of f(d), we can choose J>0 such that
IS (@) — f(8,)] < ¢ for |8 — 6,| <3, so that

LIS X 1f0)— S0l 1po,o(8 — 6,

10— 6l >6

+ Z |£(0) = S(E] 1po,o(@ — Ol

10 —0xl >8

where the first sum is <c,¢ from (5.11) and the second sum is less that

., 0
2Kc, /n sin’ ER K constant,

which follows from (5.12) and the boundedness of f(6). Thus

2Kc,

IR0 1) = FON <o) +ere+ Zrarmiy

which shows that R,(f; /') converges uniformly to f(8) on the real line.

Remark. From (5.14) and (5.15), it follows that estimates (2.3a) and
(2.3b) for the number {7 cannot be improved from o to O.

Remark. In cases I and IIT of Theorem A, it was shown earlier [2] that
R ,(8; f) converges to f(f) provided f € C,, and satisfies the Dini—Lipschitz
condition. It is possible to prove that the Dini-Lipschitz cannot be relaxed.
Further, in case II it was proved earlier [2] that R, (6; f) converges to f(6)
provided f € C,, and satisfies the Zygmund condition. It is possible to prove
that this is also the best possible class. Proof of these facts are quite long, so
we will prove them elsewhere.
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