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1. INTRODUCTION

Recently Riemenschneider et al. [2] have studied the problem of the
convergence of the trigonometric polynomial Rn(O;f), which interpolates a
given 2n-periodic function f(O) at the nodes 2kn/n (k = 0,1,..., n - 1) and
whose derivatives of orders mI' m2 , ••• , mq are prescribed at these nodes. This
is the problem of (0, m l , ••• , mq ) interpolation. Earlier Sharma, Smith and
Tzimbalario ([4]) (also Cavaretta, Sharma and Varga [1]) had given the
necessary and sufficient conditions for (0, m 1 , ••• , mq ) trigonometric inter
polation to be uniquely solvable (i.e., regular). The convergence result of [2]
is proved under the condition thatf(O) satisfies the Dini-Lipschitz condition
in cases I, III and IV (Theorem A below) and that in case II, f(0) satisfies
the Zygmund condition. They also remark at the end of their paper that
"sometimes the particular cases have better results" and they refer to some
of the earlier literature to indicate this. Thus, it was shown about fifteen
years back [5] that in the special case of (0, m l ) interpolation with m l odd,
convergence holds for all 2n-periodic continuous functions. The object of this
note is to show that a similar situation prevails in the more general case of
(0, m 1'•.• , mq ) interpolation. Thus we are able to improve Theorem 1 of [2].
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Section 2 will deal with notation and statement of the principal result. In
Section 3 we prove some properties of the determinants which we shall need.
We devote Section 4 to finding suitable expressions for the fundamental
polynomials and in Section 5 we turn to obtain the estimates for sums of the
absolute values of the fundamental polynomials. Finally in Section 6 we give
the proof of the main theorem.

2. NOTATION AND MAIN RESULT

Following earlier practice, we shall say that a trigonometric polynomial
T(O) E g-M' if

M

T(O) = ao+ L (a v cos vO + bv sin vO),
v=1

If, however,

M-I ( cn)
T(O) = ao+ ];1 (a v cos vO + bv sin vO) + aM cos MO +2 '

with c = °or 1, aM * 0, we shall say that T(O) E g-M.• ' Let E q and Oq denote
the number of even and odd integers in the set (m l' m2 , ... , mq ). With this
notation, the following theorem is known:

THEOREM A «(1,4 D. The problem of (0, m p ••• , mq ) trigonometric inter
polation on nodes 2kn/n (k = 0, 1,..., n - 1) is regular only in the following
cases:

(1) n = 2m + 1, q = 2r, E q- Oq = 0, T(O) E g-M' M = nr + m,

(II) n = 2m + 1, q = 2r + 1, Eq - Oq = 1, T(O) E g-M,O' M = nr + n,

(III) n = 2m, q = 2r, Eq - Oq = 0, T(O) E g-M,O' M = nr + m,

(IV) n = 2m + 1 (or 2m), q = 2r + 1, Eq- Oq = -1, T(O) E g-M,P
M=nr+n.

In the sequel we shall be concerned with case IV of the above theorem.
Since in this case E q- Oq = -1 and q = 2r + 1, we shall suppose that
m l , ... , m r are even and m r +l''''' mq are odd. We shall consider the operator
R n(O; f) which interpolates f(O) and satisfies the conditions:

(v= 1,2,...,q;k=0, 1,...,n-l), (2.1 )

where f3k~) are certain given numbers and Ok = 2kn/n. The fundamental
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polynomials of this interpolation are given by Poom/O) which satisfy the con
ditions:

P~":;,~(Ok) = 0,

= 1,

=0,

k = 0, 1,..., n - 1, v =1= j

k=O, v=j (2.la)

k =1= 0, v = j.

The polynomial R n(0; f) can then be given explicitly by

We shall prove

THEOREM 1. Suppose n = 2m (or 2m + 1), q = 2r + 1, and
Eq-Oq=-I, with ml' m 2 , ...,mr even and m r +1'...,m2r + 1 odd and M=
nr + n. If f(O) is a 2n-periodic continuous function, then Rn(O;f) given by
(2.2) converges uniformly to f(O) on the real line, provided the numbers 13i'P
satisfy the growth conditions

13i}) = o(n mj ), j = 1,2,..., r,

13~) = o(nmj/log n), j = r + I,..., 2r + 1.

(2.3a)

(2.3b)

The estimates for 13i}) given by (2.3a) and (2.3b) cannot be improved.

Remark. In [2), the authors prove uniform convergence of Rn(O;f) tof(O)
when f(O) satisfies the Dini-Lipschitz condition and all the 13i't's satisfy the
conditions

j = I, 2,..., 2r + 1.

Thus Theorem 1 is an improvement on the result of [2) in two respects:

(i) the Dini-Lipschitz class in [2) has been replaced by the class of
2n-periodic continuous functions, and

(ii) the freedom of 13i}) for j = 1,2,..., r has been increased as in (2.3a).

The explicit form of the fundamental polynomials Poom/O) requires the use
of the determinant Ll v(M, q) of order q + 1 which is given by

I

(-M + v)m l

Llv(M, q) =

640/35/1-4

(-M+v+n)mq

1

(-M + v + qn)m l

(-M + v + qn)mq

(2.4)
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Let AvCj, z) denote the determinant obtained from Av(M, q) by replacing the
row corresponding to mj (with mo= 0) by

Then it is known [2] that the fundamental polynomials Po,mj(O) are given by
the formula

In all other case, we have

(Case I). (2.5)

3. DETERMINANTS A~]

(2.6)

Denote the minors of the elements of the U+ 1)th row of Av(M, q) by
(") (")A/1,...,A/q + l • Then we have

and

q+1
Av(M, q) = (-IY L (-ly-1 A~~

p=1

(3.1 )

q+1
L1

v
U, z) = (-IY L (-ly-1 A~~z-M+v+(p-I)n. (3.2)

p=1

In order to find simplified expressions for the fundmamental polynomials
and to find improved estimates, we shall need some properties of A ~~. We
shall need the known result ([2, Lemma 1]) that the determinant

t~' t~' tmq
1

K ( t I"'" tq ) = (3.2a)
m1,..·,mq tm , tm , tmq

q q q

is strictly positive if 0 < t 1 < ... < tq and m 1 <mz < ... <mq are real
numbers.

We shall prove

LEMMA 1. If m 1 , ... , mr are even and mr + 1 , ... , m Zr + I are odd and if
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.1 v(M, q) and A~; are given by (2.4) and (3.1), then the following relations
hold true:

v=O,I,...,n-1 (withq=2r+ 1)(3.3)

u=O, 1,2, ,r;k= 1, 2,...,q + I), (3.4)

(j=r+ 1, ,2r+ l;k= 1,2,...,q+ 1), (3.5)

k=l=r+2

A (j) - A (j) - 0
0,.- n,q+l- ,

A (j) - A (j)
vJ( - - n-v,q+2-k

A (j) - A (j)
v,k - n-v,q+2-k

A (O) 0
O,k = ,

A (j) - A (j)
O,r+Z-p - O,r+2+p

k=r + 2,

(j = 0, 1,..., r; p = 0, I,..., r),

j=0,1,2,... ,r.

(3.6)

(3.7)

(3.8 )

Remark. A ~~ =1= 0 for 2 ~ k ~ q and j = 1,2,..., r. Also from (3.4) and
(3.6) we have

A(O) =0n,k ,

= (-I Y .1o(M, q),
(3.9)

Proof We shall first prove (3.4). A sample row of A ~~ (which is a deter
minant of order q (=2r + 1) with jth row and kth column of .1 ,,(M, q) left
out) has the elements

(-nr - n + v)mp , (-nr + v)mp , ... ,

(-nr + v + (k - 2)n)mp
, (-nr - n + v + kn)mp

" .. , (nr + v)mp • (3.10)

The corresponding row of A~j~V,q+2-k has the elements

(-nr - v)mp , (-nr - v + n)mp
, ... , (-nr- v + (q - k)n)mp ,

(-nr - v + (q - k + 2)n)mp, ... , (nr + n - v)mp • (3.11)

For p=O, 1,...,j-I,j+ 1,...,r, mp is even so that row (3.10) is obtained
from (3,11) by writing it in the reverse order. However, for p ~ r + 1, since
mp is odd, the row (3.10) is obtained from (3.11) after writing it in the
reverse order and then multiplying the row by (-1). Thus A ~~ is obtained
from A ~~ v ,q + 2 _ k by writing all the columns in the reverse order and
multiplying each of the last r + 1 rows by (-1). Thus

A (j) = (_I)r+1(_I)r A (j)
vk n-v,q+Z-k'

= (-1 y<-1 YA ~j~ v ,q + 2 - k ,

j~r

j ~ r + 1,

which proves (3.4) and (3.5).
Identity (3.3) follows from (3.1) withj=O on using (3.4).



50 SHARMA AND VARMA

When v = 0, the (r + 2)th column of .do(M, q) is (10··· of from which
we get (3.6).

For j = 0, (3.8) follows from (3.6). For j ~ 1, it is enough to prove that
A~) = 0, since A~~+J = 0 follows from (3.4). A sample row if (-1), Abji is

for 1<p <r, p *' j

and

for r + 1<P <q.

By elementary column operations, we have

where 0 is a null-matrix of order (r + 1) X r. Equation (3.8) now follows by
Laplace expansion in terms of the last r + 1 columns.

Finally, to prove (3.7), we again see that for j = 0, (3,7) follows from
(3.6). For j ~ 1, the identity follows on observing that Ab~~+2+p and A~~+ 2-p

differ from each other only in one column and its location. By elementary
row operations, it is easy to see that

A U) -AU) -( 2)r- J B C -mj+AO,r+2+p - O,r+2-p - - j,r-p" n ,

where

A = 'E.'f=J m j , and Bj,r_p is the minor of the element in the jth row and
(r - p )th column of the determinant

LEMMA 2. Under the hypotheses of Theorem 1, the following estimates
hold:

A(O)

.d (;; ) = 0(1)
v , q

(v= 1,2,... , n -1; 1= 1, 2,...,q + 1), (3.12)

A(O)
J,r+2+p

AJ(M,q)
p = 1,..., r, (3.13 )
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p=o, 1,...,r, (3.14)152 (A~~~+2+p )=152 (A~~~+2_P )=O(n-2),
v L1 v(M, q) v L1 v(M, q)

where J~g(v)= g(v+ 1)-2g(v)+ g(v-l).

Proof Since the (r + 2)th column of L1 v(M, q) is (I vm, ... vmqf, all the
determinants A ~~) for 1"* r + 2 will contain the column (v m1 vm2 ... Vmq)T.
Thus A~~l = nA . G(a) with a = v/n, where G(a) is a polynomial in a of
degree <A with coefficients which do not depend on n(A = r.i mk).

It is known [2] that L1 v(M, q) = nA(/J(a), where (/J(a) is a polynomial in a
(=v/n) of fixed degree, with coefficients independent of n and with (/J(a) '* °
for °,,;;; a ,,;;; 1. It therefore follows that

A(O)
v,l G(a)

(/J(a) ,

where cl' C2 are certain constants independent of n. This proves one part of
(3,14), The same reasoning applies to the second part of (3.14).

In order to prove (3.13), we note that

A (O) B A1.r+2+p = ,n,

where B is a determinant whose (r + 2)th column consists of the elements
(n- m1 n- m2 ... n- m, _n- m,+[ ... - n-mqf· If f.i = mink(mk), then

which proves a part of (3.13). Similarly we get the second part of (3.13).

Remark. Following the same reasoning as above, it can be proved that

(v = 1,2,... , n - 1; j = 0,..., q; 1= 1,2,... , q + 1),

(3.12a)

(3.13a)

(
AU) ) (AU) )152 v,r+2+p = (j2 v,r+2-p = O(n-2-mj)

v L1 v(M, q) v L1 v(M, q)
(p = 0, I,... , r; j = 1,..., q).

(3.14a)
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LEMMA 3. If Lf~(M, q) = L~~: A ~~~, where A ~~ are defined by (3.1),
then for j = r + 1,..., q, we have

C1 > O. (3.15)

Proof From (3.1) it is clear that Lf~(M, q) is a determinant obtained
from Lf o(M, q) by replacing the (j + 1)th row by the following row of +l's
and -1's occurring alternatively:

(1 -1 (_1)2r+l) (3.16)

1 1 1

nmj- A Lf~(M, q) = (r + l)m l 1ml a 1ml rml

(r + 1)mr 1mr a 1mr rmr

-(r + l)mr+, _l mr+' a 1mr+[ rmr +1

j + 1th row

-(r + l)mq _l mq a 1mq rmq

where the (j + l)th row is given by (3.16). Performing some elementary
column operations and then transposing the first column in front of the last
column and moving the (j + 1)th row into the (r + 2)th position, we see that

where S is a determinant of the form I~ WI, where P is a r X r matrix, a is a
null matrix and R is a r X (r + 1) matrix with all elements zero except in the
last column which is

«r + 1)mr+1 ... (r + 1)mj_1 (r + 1)mj+[ ... (r + 1)mqf.

More precisely, we have

[,"",
~""'l -r"' V~ I)"'],

P= : . , Q- 1mr (r + 1)mr
rmq 1mq

c 1 cr+1

where the row (r mj I mj) is missing in P and where cv=(_1)r+v-I{l +
(-1)v-I}/2 (v= 1,2, ,r+ 1).
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By Laplace expansion we see that

53

A (0) ]
v,r+2-p cos(np - v)B . (4.1)

LliM, q)

By (3.2a), IDet PI> 0 and using Laplace expansion and (3.2a), we have
IDet QI > O. This proves (3.15), since Llo(M, q) = O(n A

).

4. THE FUNDAMENTAL POLYNOMIALS Po.mp)) (j = 0,1,..., q)

We shaH obtain simplified expressions for the fundamental polynomials
Po,mj(B). We shaH prove

LEMMA 4. Under the hypothesis of Theorem 1, we have the following
expressions for Po,o(B) and Po,m/B):

1 [r+1 n-I

Po,o(B) = n 1 + 2 P2;1 (_1)r-
p

+ 1 ~1

For j = 1,2,... , r, we have

(_I)r+l+j imj lAU) r (-I)P AU)
P .(B) = O,r+2 + 2 L O,r+2-p cos n B

O,m) n Llo(M, q) p=1 Llo(M, q) 'P

r+1 n-I AU> ]
+ 2 L (-I)P L v,r+2-p cos(np - v)B

p=1 v=1 Llv(M,q)

and for j = r + 1,... , q, we have

(4.2)

(4.3)

i1+mj(-I)i [q+1 AU)
PO,m/B) = L (-I)P Ll (;./ ) sin n(r + 2 - p)B

n p= 1 0' q

q + 1 n -I AU) ]
+ P2;1 (-I)P V2;1 Lll;:;' q) sin{n(r + 2 - p) - v}B .

Proof In order to prove (4.1), we begin with (2.6) with j = 0 and z = e ilJ.

From (3.2), (3.3) and (3.4), we see easily that

(4.4)

Similarly, we see that
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Since from (3.2), (3.3), and (3.5), we have

1 q+1
2 [Av(O, z) +An_v(O, z)] = L (-1)P-I A~~ cos{n(r + 2 - p) - v}8

p=1
r+ 1 Zr+ Z

= L + L (-1y-1 A~~) cos{n(r+2-p)-v}8
p=1 p=r+Z

r+1

= 2 I (_1)r- p+1 A~~~+z_p cos(np - v)8,
p=1

we see the validity of (4.1) from (4.4) and (4.5).
In order to prove (4.2), we again start with (2.6) for j = 1,2,..., r and see

that using (3.3) and (3.4) we get

1 AoU, z) 1 AnCj, z)- +- ---:-.,.------,--
2 Llo(M, q) 2 An(M, q)

. q+1 A(j)
=(-1)1 L (-1y-1 (o.P )cos{n(r+2- p )8}

p=1 AoM,q
A (j) q + 1 A (j)

= (_1)r+i+ 1 O,r+Z +(-1Y L (-1y-1 O,p cos{n(r+2-p)8}.
Ao(M,q) p=l Ao(M,q)

p*r+ Z

If we split the last summation into two (one from 1 to r + 1 and the other
from r + 3 to 2r + 2) and simplify using (3.7), we get

1 AoU,z) 1 AnU,z)- +-.---
2 Ao(M, q) 2 An(M, q)

[
A (j) r A (j) ]

= (_1)r+ j +1 O,r+Z + 2 L (-1)P O,r+Z-p cos np8 .
Ao(M, q) p=1 Ao(M, q)

Similarly, from (3.3) we easily get

where

n-I 1 r+1

SI = (-1Y ~I Av(M, q) :;1 A~ cos{n(r + 2 - p) - v}e

and

(4.6)

(4.7)

. n-I 1 Zr+ Z .

Sz = (-1)1 ~I Av(M, q) p];+z (-1y-1 A~~v,p cos{n(r + 2 - p) - n + vIe.
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Since {cos n(r + 2 - p) - n + v}O = cos{n(p - r - 1) - v}O, we see easily on
using (3.7) that

r+1 n-I A (j)

S2 = SI = (-ly+l+j I: (-I)P I: v,r+2-p cos(np - v)8. (4,8)
pz) vz) L1 v(M, q)

The expression (4,2) now follows from (4.6), (4,7) and (4.8), Proof of (4.3)
is analogous and is left out.

5. ESTIMATES FOR L~-I IPo,m/O - 0k)1 (j = 0,1,... , r)

In order to obtain the estimates for these sums, we recall the Fejer kernel
and express Po,m/O - Ok) in terms of the Fejer kernel. Let tN,k denote the
known Fejer kernel (Zygmund [8, Vol. II, p. 21 j), where

2 N
tN,k= 1+- I: (N-j)coSj(O-Ok)

N jz)

= ~ [sin N(O - Ok)/2!sin(O - 0k)/2f, (5.1)

where Ok = 2kn/n (k = 0,1,... , n - 1). It is known that

n-l

I: tN,k = n,
k=O

(5.2)

and it is easy to verify that for N> 1, we have

2 cos N(O - Ok) = (N + 1) tN+I,k - 2NtN,k + (N - 1) tN-I,k' (5.3)

We now prove

LEMMA 5. The following representation holds for Po,o(O - od,

where

1 r n-I (A(O) )__ )' _ r-p+l)' 2 v,r-p+2. _
0l,k - -"-' (1) -"-' 6v L1 (M) (np v) tnp-v,k'

n pzO vzl v ,q

1 r IA(O) +A(O) !° =_ '" (_I)r- p+l l,r+2+p l,r+2-p ( )t
2,k n L.. L1 (M q) np np,k'pzO I ,

A(O)
03,k= L11(~,lq) (r+ l)tnr+n,k

and6~g(v)=g(v+ 1)-2g(v)+g(v-I).

(5.5 )
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Proof Starting with (4.1) in Lemma 4 with e - e k instead of e and using
(5.3), we see that

(Jo,o(e-Ok)=+ [1 + :t: (_1)r-
p
+I{SI,P+S2,P+S3,P}].

where

n-I A (0)
S -)' v-I,r-p+2 ( 1)

I,p -::::1 Llv(M, q) np - v + t np - v+ I,k'

n-I A (0)

S2,P = - 2 '\' v,r-p+2 ( ) tL.. "(M ) np-v np-v,k
v=1 LJ v ,q

and

n-I A(O)

S )' v,r-p+2 ( 1)
3,p= '-' np-v+ tnp-v+I,k'

v=1 Llv(M, q)

It is easily seen that

n A (0)

S '\' v-I,r-p+2 ( )
I,p = L.. " (M ) np - v tnp-v,k

v=2 LJv_1 , q

and

n-2 A (0)

S3,p= '\' v+I,r-p+2 ( )t
L.. " ( ) np - V np-v,k
v=o LJ v+ I m, q

so that

1 [ r+ I 1A (0)
(0 0) 1 '\' (l)r- p+1 n-l,r-p+2 ( )Po.o - k = (J I,k +- + L.. - "(M ) np - n tnp-n,k

n p=1 LJn_1 ,q

A (o) A(O)
+ l,r-p+2 ( ) O,r-p+2 ( 1)

Ll1(M,q) np lnp,k- Llo(M,q) np- lnp-I,k

- ~:~~~;) (np - n + 1) t np - n+ I,k ( l
From (3.6), A~~~_P+2=0 for p= 1,...,r+ 1 and from (3.9),A~~~_p+2 =0 for
p = 2,..., r + 1 and A ~~~+ 1= (-1 YLlo(M, q), so that we have

r+ I

I
p=l

A(O)
(_I)r- p+ I O,r-p+ 2 (1) 0np - tnp-I,k =

Llo(M, q)
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and

r+ 1 A (0)

)' (_I)r- p+1 n,r-p+2 ( + 1) t 1, np - n np-n+ I,k = .
p71 AAM, q)

Thus

57

1 [r+ 1
po,0«()-()k)=a1,k+- L (_1)r-

p
+1

n p=1

\

A(O) A(O)
X n-l,r-p+2 (np - n) t + l,r-p+2

An_I(M, q) np-n,k A I(M, q)

whence using (3.5), we get (5.4).

LEMMA 6. The following representation holds for Po,m/() - ()k) for
j= 1,2,... , r,

P .«()-() )=(_I)r+l+jimj{aU) +aU) +aU)}, (5.6)O,mJ k I,k 2,k 3,k

where

U) _~ r~1 (-I)p(j2 (A~~~+2_P). ( _)
al,k- n p71 v Av(M,q) np v tnp - v.k,

1 r+ I AU)
aU) = _ '\ (-I)P l,r+2-p ( )2k A( ) nptnp,k', n p""":l LJ 1 M, q

1 r AU>
a U) = _ )' (-I)P l.r+2+p ( )

3 k () np tnp,k', n p""":l A I M, q

Proof Starting with (4.2), we see that

(_1)r+ l+j i-mjPo,m/() - ()k) = S\~~ + S~~~,

where

1 [A U) r AU) ~
SU) =_ O,r+2 +2 \' (-It O,r+2+p cosnp«()-()

l.k n Ao(M, q) p'7
1

Ao(M, q) k ,

2 r+ 1 n -I AU)
s~~~=- I (-IY L v,r+2-p cos(np-v)«()-()k)'

n p=1 v=1 Av(M,q)

(5.7)

(5.8)

(5.8a)

Using (5.3) we see (after some simple manipulations which we eschew) that

4

s(j) - aU) + \' pU)2,k - I,k .:.... I,k'
I~I

(5.9)
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PU) _ -~ ~
4.k - ........

n p=1

1 r+ I

PU) )'
3,k - n ........

p=l

1 r+ I

PU) __ '"'
I.k - L.

n p=1

1 r+1

PU) __ )'
2,k - ........

n p=l

U)
(-I)P A l.r+2-p ( ) t

( )
np np.k'LI, M,q

U)

(-I)P Ao,r+ l+p ( + 1) tnp - n np-n+ l,k'
Llo(M, q)

U)
( I)P A',r + 1 +P ( )
- LlI(M, q) - np - n tnp-n,k'

U)
(-I)P AO.r+2-p ( 1) t

)
np - np-I.k'

Llo(M, q

since A~)I = 0 by (3.8).
From (3.8), we have

U) ( ')

PU) __~ f (-I)P A o•r+2+p 1 A~r+2
2,k - n P"'-:"I Llo(M, q) (np + 1) t np +l,k - n Llo(M, q)

and

U)

PU) _ ~ ~ (-I)P A I.r+ 2+p ( )3,k - L... np tnp,k'
n p~1 L1 1(M,q)

Since

r U)

PU) = a Ul +~ '\' (-I)P A o,r+2-p ( ) t
I,k 2,k ........ A (M ) np np,k

n p= I L1 0 ' q

and

U)

PU) - aU) +~ ~ (-I)P A O,r+2+p (np) t3 k - 3 k ~ () np,k, , n...... A M
p=' L10 ,q

we see that

4 1 A U) 1 r A U)
)' pU) = aU) +aU) _ _ 0,r+2 __ )~ (-1 Y O,r+ 2+p

;,;", I.k 2,k 3,k n Llo(M, q) n p"-::" Llo(M, q)

X {(np + 1) tnp +I.k - 2nptnp •k + (np - 1) tnp-"d

- aU) + aU) - SU)- 2.k 3.k I,k (5.10)

(on using (5.3) and (5.8a)). From (5.8), (5.9) and (5.10) we get (5.6).
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LEMMA 7. Under the hypotheses of Theorem 1, the following estimates
hold true,

n-I

L Ipo.o(O - 0k)1 ~ C1 ,

k=O
(5.11)

(5.12)

n-l

L: IOo,m/O-Ok)I~C2n-mj,
k=O

j= 1,2,... , r

j=r+ l, ...,q.

(5.13 )

Proof In order to prove (5.11), we see from (5.4) on using (3.17) in
Lemma 2, and (5.3) that

n-I r n-l

'\' IOI.kl = L: L: 0(n- 2 )(np - v) = 0(1).
k=O p=O v~l

Similarly using (3.16) in Lemma 2, we see from (5.4) that

n-l r

L !02,kl = 0(1) L P = 0(1).
k=O p=O

In the same manner, we have

n-l

L: I03.kl = 0(n- 1
).

k=O

This completes the proof of (5.11).
If 10- Ok I? J, then

2 J
NtN •k ~ C cosec 2

so that, as in the case of (5.11), we have

L: Ipo.o(O - 0k)1 ~ c4/n sin 2 (!J).
IO-Okl ;'b

The proof of (5.13) for j= 1,2,..., r is based on (5.6) and (5.7) and uses the
estimates (3.17a). For j = r + 1,... , q, the inequality has been proved in
Riemenschneider et at. [2].
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Remark. We can show easily that for some ~, 0 < ~ < 2n

n-I

L IPo.m/~ - 0k)1 > c3 n -mj,
k=O

j=O,I"",q. (5.14)

However, for j = r + 1,..., q, when m/s are odd, we can show that

n-I

L IPo.m/n - 0k)1 > c4 n- mj log n.
k=O

Thus estimates (5.13) cannot be improved.
In order to prove (5.14), we set

n-l

g(O) = L Po.m/O- ed,
k=O

(5.15)

which is a trigonometric polynomial of order nr + n. By Bernstein's
inequality for trigonometric polynomials, we have

If g(O) attains its maximum at ~, we have

g(~) ~ en -mj max !g(mj)(O)! ~ cn -mjg<mj)(Oi) = en -mj
0<;; 9 <;;21r

since g(mj)(Oi) = 1 from the properties (2.1a) of the fundamental polynomials.
Thus we have shown that

n-l

L IPo.m/~ - 0k)1 ~ I g(~)1 ~ cn -mj,
k=O

which proves (5.14).
The proof of (5.15) is more difficult. We use the formula (4.3) which gives

Po.mj(O) for j = r + 1,... , q. Since sin nCr + 2 - p)(n - Ok) = 0 and since

sin{n(r + 2 - p) - v}(n - Ok) = _(_l)nir+ 2
-p) sin v(n - Ok)'

it follows from (4.3) (recall that n is odd) that

1 I n - 1 q + I A (j) I
jPo.m/71 - 0k)1 = - L L L1 (;; ) sin v(71 - Ok)

n v=lp=l v,q
so that
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where
n-I A (j)

S (j) - " vp . ( e )n,p - L.. .d (M ) sm v n - k.·
v= 1 v , q

Then elementary calculation gives

61

4 sin 2

(

()) n - 1 (A (j) )n - k (j) _ 2 vp .
2 Sn,p - - L Ov .d (M ) sm v(n- ()k)

v= 1 v' q

A (j) +A (j)+ O,p O,q + 2 -p sin (n - ()k)'

.do(M, q)

We therefore get

n-I 1 n-I I
q + 1

1
\' - -- \' (j)..:..... IPo,m/n ()k)l- L '- Sn,p
k=O n k=O p=1

1 Iq+l A(j) +A(j) I n-I I n-() I
~ - L O,p O,q+2-p L cot k

2n p=1 .do(M, q) k=O 2

1 n- 1 q + 1 n -I I ( A (j) ) I (7[ - 0 )-- L L L 0 2
vp cosec 2

k
4n k=O P=l v=1 v Av(M,q) 2'

It is easy to see that

n-I I 0 IL cot n - k > cn log n
k=O 2

From Lemma 2, we have

and

I
q + 1 A (j) +A (j) I
\' O,p O,q+2-p =2

p--:l .do(M,q)

and on using (3.17a), we get

I
q+l A(j) I
\' O,p > cn -m;
P~I .do(M, q) ,

n-I

2.:: IPo,m/n - ()k)1 > cn- mj log n - c1n- m; > c2n- mj log n.
k=O

This completes the proof of (5.15).

6. PROOF OF THEOREM 1

Since R n((); f) reproduces constants, we have

n-I

L Po,o«() - Ok) = 1.
k=O
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Therefore from (2.2), we have

n-l

Rn(O;f) - f(O) = L: {f(Ok) - f(O)} Po,o(O - Ok)
k=O

q n-l

+ L: L: fJl'YPo,m/O- Ok)
j=l k=O

From (5.13) in Lemma 7 and (2.3a), it follows that

q n-I

II21<L: L: IfJkj}IIPo,m/O-Ok)l=o(l).
j= 1 k=O

From the continuity of f(O), we can choose J > 0 such that
If(O) - f(Ok)1 < e for 10 - 0kl <J, so that

1111< L: If(O) - f(Ok)llpo,o(O - 0k)1
19- 9kl;',s

+ L: If(O) - f(Ok)llpo,o(O - 0k)l,
19- 9kl>,s

where the first sum is <c 1e from (5.11) and the second sum is less that

K constant,

which follows from (5.12) and the boundedness of f(O). Thus

which shows that Rn(O; f) converges uniformly to f(O) on the real line.

Remark. From (5.14) and (5.15), it follows that estimates (2.3a) and
(2.3b) for the number fJkj} cannot be improved from 0 to O.

Remark. In cases I and III of Theorem A, it was shown earlier [2] that
Rn(O;f) converges to f(O) providedf E C2" and satisfies the Dini-Lipschitz
condition. It is possible to prove that the Dini-Lipschitz cannot be relaxed.
Further, in case II it was proved earlier [2] that RiO;f) converges to f(O)
providedf E C2" and satisfies the Zygmund condition. It is possible to prove
that this is also the best possible class. Proof of these facts are quite long, so
we will prove them elsewhere.
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